
Graphs



Graphs

• Non-linear data structures

– Trees

– Graphs

• Tree

– There is a hierarchical relationship between parent 

and children.

– Tree is a special case of graph.

• Graphs

– No hierarchical relationship.



What is a graph?

• Definition:

– A data structure that consists of a set of nodes

(vertices) and a set of edges that relate the nodes

to each other.

– The set of edges describes relationships among the

vertices .

– In the graph,

V = {a, b, c, d, e}

E = {ab, ac, bd, cd, de}



What is a graph?
Graphs consist of

▪ points called vertices

▪ lines called edges

• Edges connect two vertices.

• Edges only intersect at vertices.

• Edges joining a vertex to itself are called loops



Formal definition of graph

• A graph G consists of two things:

1. A set V, called set of all vertices(or nodes or

elements)

2. A set E, called set of all edges such that each edge

e in E is identified with a unique pair (u,v) of nodes

in V, denoted by e=(u,v)

• A graph can be represented as G=(V,E)



Graph terminology

• Adjacent nodes: two nodes are adjacent if they
are connected by an edge

• Path: a sequence of vertices that connect two

nodes in a graph.

• Degree of a node x, deg(x) is the no. of edges

containing x.

• Complete graph: a graph in which every vertex
is directly connected to every other vertex

5 is adjacent to 7
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Examples of Graphs

• V={0,1,2,3,4}

• E={(0,1), (1,2), (0,3), (3,0), (2,2), (4,3)}

0
1

4

2

3

When (x,y) is an edge,
we say that x is adjacent to y, and y is
adjacent from x.

0 is adjacent to 1.
1 is not adjacent to 0.
2 is adjacent from 1.



Graph terminology

• Connected graph: a graph is said to be

connected, if there is a path from every node to

every other node

• The size of a graph is the number of nodes in it

• The empty graph has size zero (no nodes)

• Cycle: a path that begins and ends at same

vertex

• A directed graph is one in which the edges have

a direction

• If a graph does not have any cycle, then it is

acyclic graph

• An undirected graph is one in which the edges

do not have a direction



•An undirected graph is connected if there is a path

from every node to every other node

•A directed graph is strongly connected if there is a

path from every node to every other node

•A directed graph is weakly connected if the

underlying undirected graph is connected

•Node X is reachable from node Y if there is a path

from Y to X

•A weighted graph is a graph in which each edge is

assigned a weight.



Terminology

Graphs that are (a) connected (b) disconnected (c) 

complete (d)directed  (e) weighted graph

0
1

4

2

3

a b

c d e
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Graph representations

• Sequential representation

– Using adjacency matrix

• Linked list representation

- Using adjacency list

• Set representation

- Using edge list



Sequential representation

Adjacency matrix:

• Suppose G is a directed graph with n nodes

• In this representation, each graph of n nodes is

represented by an n x n matrix A, that is, a two-

dimensional array A

• A[i][j] = 1 if (i,j) is an edge

• A[i][j] = 0 if (i,j) is not an edge

• i.e Aij = 1, if there is an edge from vi to vj

= 0, otherwise



Example of Adjacency Matrix

0  1  2  3  4

0
1

4

2

3

0  1  0  1  0
0  0  1  0  0
0  0  1  0  0
1  0  0  0  0
0  0  0  1  0

A =

0

1

2

3

4



Another Example of Adj. Matrix

0 1 2 3 4 5

John 2

Joe 3

Mary 0 Helen 1

Tom 4 Paul 5

0  0  0  0  0  0
0  0  0  0  0  0
1  1  0  0  1  1
1  1  0  0  1  1
1  1  0  0  0  0 
1  1  0  0  0  0

A =



Adjacency matrix

• Suppose G is an undirected graph.

• Then the adjacency matrix A of G will be a symmetric 

matrix.

• i.e aij=aji for every i and j             a                   b

a  b  c  d  e

c                 d          e
0  1  1  0  0
1  0  0  1  0
1  0  0  1  0
0  1  1  0  1
0  0  0  1  0

A =

a

b

c

d

e



Exercise

• Consider a directed graph with nodes a, b, c & d. 

The adjacency matrix of A of G is as follows. Draw 

G.

0  0  0  1  
1  0  1  1 
1  0  0  1  
0  0  1  0  

A =

a

b

c

d



Pros and Cons of Adjacency

Matrices

• Pros:

– Simple to implement

– Easy and fast to tell if a pair (i,j) is an edge:

simply check if A[i][j] is 1 or 0

– Easy to implement dense matrix.

• Cons:

– No matter how few edges the graph has, the

matrix takes O(V2) in memory

– Memory wastage in case of sparse matrix.

– Difficult to insert and delete nodes in G



Linked list representation

• Using adjacency list.

– List of adjacent nodes.

– Adjacent nodes are also called successor or

neighbors

– It is the space saving way of graph representation.



Adjacency Lists Representation

• A graph of n nodes is represented by a one-

dimensional array L of linked lists, where

– L[i] is the linked list containing all the nodes

adjacent from node i.

– The nodes in the list L[i] are in no particular order

A D

E

B C

Node Adjacency 

List

A B, C, D

B C

C

D C, E

E C



Adjacency Lists Representation

A                               D                                  

E

B                                C

Nod

e

Adjacency 

List

A B, C, D

B C

C

D C, E

E C
B C D NULL

C
NUL

L

E
NUL

LC

C
NUL

L

A

B

C

D

E



Adjacency Lists example

Eg2:



Set Representation

• Using edge list.

• Straight forward method of representing graph.

• Two sets are maintained

1. V, the set of vertices

2. E, the set of edges- which is the subset of V x V in 

sorted form.

A                             B     

C         V={ A, B, C, D, E}

D                 E                                              

E={(A,B),(A,D),(A,E),(B,C),(B,E), (D,E), (C,E)}



So, Representation of Graphs..
• Three standard ways.

– Adjacency Lists.

– Adjacency Matrix.

– Edge list.

V={ a,b,c,d}

E={ (a,b),(a,c),(a,d),(b,c),(c,d)}

a

dc

b a

b
c
d

b         

a         

d         

d         c         

c         

a         b         

a         c         

a

dc

b
1 2

3 4

1   2   3   4
1  0   1   1   1
2  1   0   1   0
3  1   1   0   1
4  1   0   1   0



Graph traversals

• Problem: find a path between two nodes of the

graph (e.g., Austin and Washington)

• Methods:

1.Depth-First-Search (DFS) – use Stack for

implementation

2.Breadth-First-Search (BFS) – use Queue for

implementation



Breadth First Search

Using QUEUE



Graph traversals

• During the execution of DFS or BFS, each node N of

G will be in one of three states, called status of N:

– STATUS =1 (Ready state) – The initial state of the node N.

– STATUS =2 (Waiting state) – The node is on stack/queue.

Waiting to be processed.

– STATUS =3 (Processed state) – The node N has been

processed.



Breadth-First-Search (BFS)

• What is the idea behind BFS?

– Look at all possible paths at the same depth
before you go at a deeper level

– Back up as far as possible when you reach a

"dead end" (i.e., next vertex has been "marked"

or there is no next vertex)

– Its like ripples in the pond.

• BFS can be implemented efficiently using a 

queue



BFS- rules



Breadth-first searching

• A breadth-first search (BFS)

explores nodes nearest the

root before exploring nodes

further away

• For example, after

searching A, then B, then C,

the search proceeds with D,

E, F, G

• Node are explored in the

order A B C D E F G H I J K

L M N O P Q

• J will be found before N

L M N O P

G

Q

H JI K

FED

B C

A



BFS algorithm

1. Put the starting node in a Queue named 
OPENQ

2. Repeat until Queue is empty:

3. Dequeue a node

4. Process it

5. Add it’s children to queue



BFS example

• Initially all nodes are in ready state

• Let the starting node be A. Insert in Q

• Node visited: A   

B

A

E

C D A



BFS example

1. Dequeue A

2. Insert the adjacent unvisited vertex of A in queue

Node visited: A   B

B

B

A

E

C D



BFS example

B     C

1. Insert the adjacent unvisited vertex of A in queue: C

Node visited: A   B    C

B

A

E

C D



BFS example

B     C      D

1. Insert the next adjacent unvisited vertex of A in 

queue

Node visited: A   B    C     D

B

A

E

C D



BFS example

C     D      E

1. Now no unvisited adjacent vertex for A. 

2. So dequeue: Remove B and insert its adjacent vertex in 
queue : E

3. Display E

Node visited: A   B    C     D    E

B

A

E

C D



QUEUE: 

Example 2

a

b c d e

c d e f g

d e f g

e f g h i j

f g h i j

g h i j

h i j k

i j k

j k l

k l

l

a

i

d

h j

b

f

k l

ec

g

Result:   a  b  c   d  e  f  g   h  I   j  k  l



Depth First Search

Using STACK



• Depth First Search algorithm(DFS) traverses a

graph in a depthward motion and uses a stack

to remember to get the next vertex to start a

search when a dead end occurs in any iteration.



Depth-First-Search (DFS)

• What is the idea behind DFS?

– Travel as far as you can down a path.

– Nodes are visited deeply on the left-most

branches before any nodes are visited on the

right-most branches

– Back up as little as possible when you reach a

"dead end" (i.e., next vertex has been "marked"

or there is no next vertex)

– It is similar to the inorder traversal of a tree.

• DFS can be implemented efficiently using a

stack



DFS- rules



DFS Algorithm

1. Push the starting vertex into the stack OPEN

2. While OPEN is not empty do

3. POP a vertex v

4. If v is not in VISIT

5. Visit the vertex v

6. Store v in VISIT

7. Push all the adjacent vertices of v onto 

OPEN



Depth-first searching

• A depth-first search (DFS)

explores a path all the way

to a leaf before

backtracking and exploring

another path

• For example, after

searching A, then B, then D,

the search backtracks and

tries another path from B

• Node are explored in the

order A B D E H L M N I O P
C F G J K Q

• N will be found before J

L M N O P

G

Q

H JI K

FED

B C

A



DFS example

• A

• Initially all nodes are in ready state          
• Let the starting node be A. Push it on to stack & display it
• Output: A   

B

A

E

C D



DFS example

A

1. Push the adjacent unvisited vertex B onto stack and 

print it

Output: A   B

B

B

A

E

C D



DFS example

E

B                

A

1. Push the adjacent unvisited vertex E onto stack and print 
it

Output: A   B  E

B

A

E

C D



DFS example

D

E

B

• A

1. Push the adjacent unvisited vertex D onto stack and print 
it

Output: A   B  E  D

B

A

E

C D



DFS example

E

B

A

1. Now no adjacent unvisited neighbor for D

2. Pop it and find the unvisited adjacent vertex of stack top

Output: A   B  E  D

B

A

E

C D



DFS example

C

E

B

A

1. Push C on stack and print it

2. Now no unvisited vertex!!

Output: A   B   E  D   C

B

A

E

C D



DFS example:2

A

1. Push A onto stack

Output: A

B

A

E

C D



DFS example:2

B

A

1. Push one of the unvisited  adjacent vertex B on to 

stack

Output: A B

B

A

E

C D



DFS example:2

C

A

1. Now no adjacent neighbor for B. 

2. So pop B and push another adjacent vertex of A 

onto stack

Output: A B  C

B

A

E

C D



DFS example:2

E

C

A

1. Push E on stack

Output: A B  C E

B

A

E

C D



DFS example:2

D

A

1. No unvisited vertex for E. 

2. pop E

3. No unvisited adjacent vertex for C also. So pop C

4. Push the unvisited vertex D on to stack and print it

Output: A B  C E D

B

A

E

C D



DFS example:2

1. Now no unvisited vertex 

Output: A B  C E D

B

A

E

C D


